Evolutionary Robotics
Course within PhD program

Eric Medvet

June 2020

Section 1

General information

Lecturer

| Eric Medvet

| Dipartimento di Ingegneria e Architettura (DIA)
I http://medvet.inginf.units.it/

Course materials

| Lecturer's slides

I http://medvet.inginf.units.it/teaching/
evolutionary-robotics-phd-2020

| Suggested textbooks (for further reading)

| Kenneth A De Jong.Evolutionary computation: a uni ed
approach MIT press, 2006

I Other material:

I 1 will point you to some scienti ¢ papers for discussing
examples of application or speci c details

Section 2

Introduction

What is Evolutionary Robotics?

De nition

Evolutionary Robotics is the application of the techniques,
methods, and principles dEvolutionary Computatiorfor the
automatic design of théody (morphology) and themind
(controller) of autonomous robotic agents.

Section 3

Evolutionary computation

Evolutionary Computation vs. Machine Learning?

De nition
Machine Learning is the science of getting computer to learn
without being explicitly programmed.

Up to now

\learn without being explicitly"! re ne some prede ne more
general solution scheme

I RF for regression nd a goodforest
| SVM for binary classi cationl nd a goodhyperplane

Up to now

\learn without being explicitly"! re ne some prede ne more
general solution scheme

I RF for regression nd a goodforest
| SVM for binary classi cationl nd a goodhyperplane

We have some (quite precise) idea (tipothesi} about the
nature of the solution: a tree, an hyperplane, ...

What if we do not?

No hypothesis

I We just have a way to assess a candidate solution
I No hypothesis
| Computer: be free, learn a (good) solution!

How?

No hypothesis

I We just have a way to assess a candidate solution
I No hypothesis

| Computer: be free, learn a (good) solutiorft program
yourself!)

How? A signi cant case:
I problem: life
| user: God?
| computer: nature
I learning method: natural evolution

Evolutionary process

A general and basic scheme:
| a population of individuals compete for limited resources
I the population is dynamic: individuals die and are born
I ttest individual survive and reproduce more than the others
I

0 spring inherit some characters from parents (they are
similar but not identical)

Evolutionary process

A general and basic scheme:
| a population of individuals compete for limited resources
I the population is dynamic: individuals die and are born
I ttest individual survive and reproduce more than the others
I

0 spring inherit some characters from parents (they are
similar but not identical)

On/by/for computers? Evolutionary computation (EC)

EC: a bit of history

1930s rst ideas
1960s ideas development using rst computers
1970s exploration
1980s exploitation
1990s uni cation
2000s+ mature expansion

Communities

At least three communities:
| biologists: simulate/understand real evolution
I computer scientists/engineers: build interesting artifacts
I arti cial-life researchers: build/study arti cial worlds

Result:
| some duplications
| di erent vocabularies
| strong habits

Kenneth A De Jong.Evolutionary computation: a uni ed
approach MIT press, 2006

What can be taught/learned?

general scheme

some signi cant variants

I
I terminology
I
| general usage guidelines

Not here:
| (variant) details
I detailed motivation (\theory")
| specic tools

General scheme

a population of individuals compete for limited resources
the population is dynamic: individuals die and are born
ttest individual survive and reproduce more than the others

o0 spring inherit some characters from parents (they are
similar but not identical)

Some questions:

what is an individual?

what is a population? what are resources?
how individuals compete?

how tness is measured?

how do individual reproduce?

Individual

A candidate solution for the considered problem:
| a program in a given programming language
| a set of numerical parameters
I a picture
I

Internally represented as:
I itself (program, set, picture, ...)
I some well de ned data structure:

| a xed/variable-length string of bits

| an abstract syntax tree
|

Individual

A candidate solution for the considered probleifphenotype)
| a program in a given programming language
| a set of numerical parameters
I a picture
I
Internally represented ag,genotype)

I itself (program, set, picture, ...)

| some well de ned data structure:

| a xed/variable-length string of bits

| an abstract syntax tree
|

Individual: why genotype/phenotype?

I To resemble nature
| To ease manipulation
I how two programs should reproduce?
I how two images should reproduce?
I To allow reuse, hence enabling actual usage of EC

I someone found a good way of making bits strings reproduce

I user \just" need to decide how to transform
(genotype-phenotype mapping) a bits string to his/her
solution form (e.g., numerical parameters)

Genotype and phenotype

In general:

| search for the good solution actually occurs in the space of
the genotype

| the user is interested in the phenotype
| the tness is computed from the phenotype

Population and competition for resources

Mainstream:
| a population is a set of individuals with a xed (max) size
I \limited resources" is a place in the population

The population is dynamic:

I when a new individual is born, some individual must leave the
population (die): which one?

Population dynamics

How/when individuals are replacedénerational model or
replacement strategy)

Underlying (and common) assumptions:
I individuals life is instantaneous

I given the genotype, the phenotype (if any) and the tness are
immediately known

| time owing is determined by births (and deaths)

Generational model: general scheme

Parameters:
| a population ofm parents
| a population ofn o spring (built from parents; how? later)
| a Boolean ag (overlapping vs. non-overlapping)
(Recall: population size is xed)

Overlapping generational model

At each time tick:
1. build n o spring from the m parents
2. obtain ann+ m population by merging parens and o spring
3. selectm individuals to survive

Non-overlapping generational model

At each time tick:
1. build n o spring from the m parents (assum& m)
2. selectm individuals to survive among the o spring
All parents die!

Common cases

n = m, overlapping

n = m, non-overlapping

n = 0:8m, overlapping

n =1, overlapping (steady state)

Common cases

n = m, overlapping

n = m, non-overlapping

n = 0:8m, overlapping

n =1, overlapping (steady state)

Problem:
I dierent degrees of dynamicity in the single time tick
I makes di erent variants comparison di cult

Solution:

I measure time owing as number of births referred to
population sizem

I ageneration occurs eachm births

Selection criteria

How to
I select individuals to survive?
| select parents to reproduce?

Many options:
I uniform (neutral) selection
| tness-proportional selection
I rank-proportional selection
I truncation selection
| tournament selection

Fitness/rank-proportional

Fitness-proportional:
1. given the numerical tness of each individual

2. randomly pick one individual with probability proportional to
the tness (the better, the larger probability)

Rank-proportional:
1. given the rank of each individual in a tness-based ranking

2. randomly pick one individual with probability proportional to
the rank (the better, the larger probability)

(Can be applied to a non-numerical tness, in principle)

Uniform and truncation

Uniform:
1. pick randomly an individual (with uniform probability)

Truncation:
1. pick the best individual
(Deterministic)

Elitism

Preserving as is one (or more) best individual
I a form of truncation

I actually, individuals chosen with elitism are not o spring, but
they are in the new population

Tournament selection

Given a parametengize (Size of the tournament):
1. randomly (with uniform probability) pickns;e individuals
2. from them, choose the one with the best tness

Selection criteria di erences

Is criterion A better than criterion Bdust measure!

Criteria di er in how strongly they tend to prefer tvs. unt
individuals:
| uniform selection: no preferences
I truncation selection: strong preference of t individuals
| tournament: nsize! 1: no preferencensi,e! m: strong
preference

Selecting t/unt individuals

Strong preference (or selective/evolutionary pressure):
| population tends to converge to ttest individuals
I evolution concentrates in improving most promising solutions
(exploitation)
I risk of \falling" in local optimum
Weak preference (or selective/evolutionary pressure):
| population includes also un t individuals

I evolution investigates many di erent (maybe not promising)
solutions éxploration)

I risk of not nding a good solution

Exploration/exploitation trade-o is hard to rule!

Selectors: common cases

I Reproduction: tournament ofisize
I e.g., m = npop = 500, nsize = 5
| Survival: truncation

I Reproduction: tness proportional
| Survival: truncation

Reproduction

Build n o spring from the m parents. How?
General scheme:
I given one or more parents, an o spring is generated by
applying a unary or binargenetic operator on parent

genotypes
I unary (mutation): f : G 7! G
| binary (recombination ocrossoven: f : G? 7! G

Then:
I givenn and a set of weighted operators, generate o spring

with operators according to their weights (deterministically or
stochastically)

| or generate o spring by applying (or 3) times the crossover
and then the mutation on the resulting individual(s)

Choice of operators

Operators:
I crossover for generating 80% of o spring
I mutation for generating 20% of o spring

Deterministically:
1. for 0:8n times

1.1 select 2 parents (with reproduction selection criterion)
1.2 apply crossover to genotypes

2. for 0:2n times

2.1 select 1 parent (with reproduction selection criterion)
2.2 apply mutation to genotype

Choice of operators

Operators:
| crossover for generating 80% of o spring
| mutation for generating 20% of o spring

Stochastically:
1. for n times
1.1 randomly choose between mutation/crossover with 20/80
probability
1.2 select 1 or 2 parents (with reproduction selection criterion)
accordingly
1.3 apply operator to genotype(s)

Mutation for bits string genotypes

Most classical option: probabilistic bit ip mutation
1. copy parent genotype, as child genotypey.

2. for each bit in the inge, ipit (0! 1orl! 0)withp
probability

Commonly,p =0:01

gp = 001010011101010101100100101
gc = 001010111101010101101100101

Crossover for (bits) string genotypes

Many options:

one-point crossover
two-points crossover
n-points crossover
uniform crossover

One-, two-,n-points crossover

Assume parents with equal genotype size:

1. choose randomly one (twa) cut pointsin the genotype
(indexesi such thati < jgp,j = jOp,j)

2. child bits before the cut point comes from parent 1, child bits
after the cut point comes from parent 2

In general,jth bit comes from parent 1 i closest larger cut point
is even, from 2, otherwise.

One-, two-,n-point crossover

One-point:
Op, = 0010100111010101f1100100101
Op, = 1110101010100101f0101110111
gc = 00101001110101010 0101110111
Two-points:
Op, = 0010100111010101G1100100101
Op, = 1110103010100101G0101110111

gc = 0010100 0101001010 1100100101

Uniform crossover

A cut point is placed at each index with = 0:5 probability

Crossover with variable length (bits) string genotype

Many variants:
| one-, two-points crossover

I cut points may be di erent within parents
I child genotype size may be larger or smaller than parents sizes

I
One-point:

Op, = 00101001110101011100100101
Op, = 111010103010010100101110111
gc; = 00101001110101010 010010100101110111

Genotype-phenotype mapping must allow for variable length
genotypes!

Mutation (trees)

Parent Child
1 1
(x y);+0-5 (X y);+1+y
+ +
T
0:5 +
N VAN
= = Yy 1
/N N\ /N N\
xy 1Xx xy 1 X

1. choose a random subtree
2. replace with a randomly generated subtree
Usually, constraints on depth

Crossover (trees)

Parent 1 Parent 2
(x) +05 1+ X))
s I
e

1. choose a random subtree in parent 1
2. choose a random subtree in parent 2
3. swap subtrees (child is copy of parent)

Usually, constraints on depth

Child

1+x+0:5

+
N
+ 0:5

/N

1 x

Mutation for real-valued vector$&(= RP)

Gaussian mutation
| parentg,, child gc
| foreachi21;:::;p,gé=gé+ ,with N (0;)
| is a parameter representing the mutation strength

| large ! exploration
I small ! exploitation

...and many similar variants

Crossover for real-valued vecto&< RP)

Besides all suitable for string genotypes, also:
| parentsgp, ; gp,, child gc
| foreachi 2 1;:::;p, 9t = g, + (g), Gp,) With
U (0;1)
Lacks the ability of explore out of the hyperrectangle enclosing the
population

Role of operators

Mutation (X)or crossover?
I mutation! exploitation
I crossoverl exploration

But the EC community is still debating about this point. ..

Population initialization

| Totally random
I More speci c approaches, dependent on genotype form

Fitness

Fitness of an individual = ability to solve the problem of interest

I errors on several tness cases by
execution/simulation/application

Common cases:
I one numerical index

I more than one numerical indexes
I

Closely related with selectors

Many indexes: multiobjective

How to compare individualg, i, ?
| linearization
Fof@i)= @)+ + aofa(i)
| lexicographical order
| comparefy(iy) > f1(ia); if tie, fa(iz) > fa(io): ...
| Pareto dominance
I

Q: with which selectors?

Pareto dominance
i1 dominatesi; i :

8j;fi(in) fi(i2) 9k;f(iz) > fk(i2)

10—~

fa

o N B~ O @
T
°
°
|

Pareto dominance
i1 dominatesis i :

8j;fi(in) fi(i2) 9k;f(iz) > fk(i2)

10

| 1st Pareto front:
undominated solutions

fa

o N B~ OO ©

Pareto dominance
i1 dominatesi; i :

8j;fi(in) fi(i2) 9k;f(iz) > fk(i2)

10

| 1st Pareto front:
undominated solutions

I 2nd Pareto front:
undominated solutions,
while not considering 1st
front

fa

o N B~ OO ©

Pareto dominance
i1 dominatesi; i :

8j;fi(in) fi(i2) 9k;f(iz) > fk(i2)

10

| 1st Pareto front:
undominated solutions

I 2nd Pareto front:
undominated solutions,
while not considering 1st
front

fa

o N B~ OO ©

An example EA

1b O

2 | = Initialize()

3 while b npopNgen do

4 | 19=;

5 foreach i 2f 1;:::;nyopg do

6 (9p:: Ppssfpy) SelTournament(l)
7 (9p,: Pp,i fp,) SelTournament()
8 g Om(0c(9p:; Ip,))

9 1% 190F (9o (9e)iT((9e))g
10 b b+1

11 end

2 [1 I[1°

13 | while jlj > nyop do

14 | I I'nSelworst(1)

15 end

16 end

In practice

I 1s my EA working?
| When to stop evolution?
I How to choose value for paramete?

In practice

I 1s my EA working?
| When to stop evolution?

I How to choose value for paramete?

1:02

1
0:98
0:96
0:94

Fitnessf (i)

On many (30) runs!

|
50
Generation

Issues

Diversity
Variational inheritance
Expressiveness

Diversity

Is the population diverse enough?

I \No" ! too much exploitation! local minimum
I \Yes" ! in principle, no drawbacks

I how to measure diversity?
I how to enforce/promote diversity?

Giovanni Squillero and Alberto Tonda. \Divergence of character
and premature convergence: a survey of methodologies for
promoting diversity in evolutionary optimization". Intnformation
Sciences329 (2016), pp. 782{799

Diversity: visualization

=

Gene index
Gene index
Diversityd

o

1 1
1 Ngen 1 DNgen

Generation Generation Usageu

o
=

Eric Medvet et al. \Unveiling evolutionary algorithm representation
with DU maps". In: Genetic Programming and Evolvable
Machines19.3 (2018), pp. 351{389

Variational inheritance

Are children similar but not identical to parents?

I \Too much similar" ! too much exploitation! local
minimum, no/slow evolution

I \Too much dierent" ! no exploitation, just coarse
exploration (random walk)

I How to measure? properties of the representation
I How to tackle? Operators, mapping, both?

Properties of the representation

Given:
| genotype spac&, phenotype spac®, tness spaceF
| a (partial) order existing inF
| genotype-pheotype mapping: G 7! P
| often : G7!P[? , where? represents arnnvalid solution
I tness function: f : P 7! F
| mutation oy, : G 7! G and crossoveo, : G 7! G
| distancesdg : G? 7! R* anddp : P2 7! R*
some properties of the representation can be de ned

Invalidity

The tendency of generating invalid phenotypes:

fg2G: (9)= ?q

invalidity = iG]

or, experimentally, withG

Degeneracy

N
/ 0@g
! 1
\ 20®
%0

_/

The degree to which di erent genotypes are mapped to the same
phenotype:

iPj
degeneracy =1 —
g y iG]
or, experimentally, withG andP = f (g);g 2 Gg
Notes:
| often called redundancy

I assumingP is the range of (i.e., P =f (g);g2Gg)

Uniformity of degeneracy

0—0
0 ————0
00000000000 —0
000000000 0

The degree to which the sizes of di erent sets of genotypes
mapping to the same phenotype di er:

G=1fg2G: (9)=p0a:8pi2P

non-uniformity = S (coe cient of variation)
s

or, experimentally, withG andP = f (g);g 2 Gg

Redundancy

The degree to which parts of the genotype do not concur in the
mapping process

I how to measure depends on the representation

I is a source of degeneracy: genotypes which di er in redundant
part are (likely) mapped to the same phenotype

Locality

The degree to which close genotypes are mapped to close
phenotype:

locality = cor(Dg; Dp)

or, experimentally, withG andP = f (g);g 2 Gg; or simpler
versions for discrete spaces (no need for distance, nor for
correlation)

Evolvability

The likelihood of obtaining a better individual after the application
of a genetic operator

I involves the operator and the tness

evolvability,ation = Pg((om(9p)) f((9p))

fO(0c(9p1:9p,)) F((Gpy))
evolvability,ssover= P @ A A

fOC 0c(9piiGp2)) F((Gp2))

More in general: the tendency of an evolutionary system to
improve solutions

Expressiveness

Is the representation (phenotype) expressive enough®P(large
enough?)
I \Low expressiveness!' good/optimal solution might not be
representable, or might not be reachable
I \Large expressivenesd" large search space very long or
in nite convergence time

Fitness landscape

I How are genotype and tness spaces related?
I What does a small step on one correspond to on the other?
| Local optima?

Fitness landscape

Philip A Romero and Frances H Arnold. \Exploring protein tness landscapes
by directed evolution”. In: Nature reviews Molecular cell biology0.12 (2009),
p. 866

Subsection 1

EC in action

EC in action

https://youtu.be/4pdiAneMMhU

Subsection 2

Some common EAs

Genetic Algorithms (GA)

| Genotype = phenotype = bits string
I 'm=n 1000, no overlapping

| Fitness-proportional selection, or multiobjective
(Pareto-based) selection

I Most widely used/studied
| Genotypes often encodes numerical parameters

Genetic Programming (GP)

Focus: individuals are programs

I Genotype = phenotype = tree (tree-based GP) or list of
instructions (linear GP)

I m=n 1000, overlapping
I Tournament selection

| Syntactic/semantic validity?
I Representation is de ned by a terminal s&t and a function
setF

Grammatical Evolution (GE)
A form of GP based on GA, given a context-free grammar (CK&5)

I Genotype = bits string, phenotype = strin@ L (G), by means
of a mapping procedure

| steady state n 500 n =1, overlapping) orm = n,
overlapping

I Tournament selection

CFG for simple mathematical expressions:

<expr> = (<expr> <op> <expr>) | <var> | <num>
<op> =+ | -|* [/
var> =X |y

<num> =0 1]2|3|4]|5]6]7]8]9

GE (standard) genotype-phenotype mapping

g = 01101001 00001101 01011000 00000011 11000110 01111101
=10513883198125 (integers)
i g it] w | Phenotypep
<expr>
0 105 3 0 0] (<expr> <op> <expr>)
1 13 3 1 O0f (<var> <op> <expr>)
2 8 2 0 0f(x <op><expr>)
3 3 4 3 0| (x/<expr>)
4 198 3 0 O] (x/ (<expr> <op> <expr>))
5 125 3 2 0| (x/ (<num> <op> <expr>))
0 105 10 5 1|(x/ (5 <op><expr>))
1 13 4 1 1|(x/(5-<expr>))
2 8 3 1 1|(x/(5-<var>))
3 3 2 1 1|(x/(5-y))
<expr> ;= (<expr> <op> <expr>) | <var> | <num>
<op> u=+ | - | * |/
<var> = X |y

<num> =0 |1]2|3|4]|5|6|7|8]9

(bits)

An alternative: WHGE genotype-phenotype mapping

Alberto Bartoli, Mauro Castelli, and Eric Medvet. \Weighted
Hierarchical Grammatical Evolution”. IntEEE transactions on
cybernetics(2018)

Section 4

EC for robotics

Subsection 1

Evolving a neural network

What is arti cial neural network (ANN)?

ANN for controlling (small) robots

E.g., Thymio-Il robot:
I inputs: 7 IR proximity sensors (and others)
| outputs: 2 motors (wheels)

Designing a neural network

Choose:
| topology
I weights ()
| other \details": e.g., activation function

Just the weights

A possible EC-based approach:
I phenotype: ANN with pre- xed topology
| genotype: 2 RP, p depending on the topology
| genetic operators suitable fdt = RP
I

other representation-independent parameters (e.g., selection
criteria, generational model)

I tness (mainly problem-related)

How to choose the topology?
I usually, input and output size are prede ned, so...

I ...how to choose how many hidden layers and how many
neurons per layer? (expressiveness)

Subsection 2

NEAT

An alternative to \just the weights"

Kenneth O Stanley and Risto Miikkulainen. \Evolving neural
networks through augmenting topologies”. IrEvolutionary
computation 10.2 (2002), pp. 99{127

Key ideas:
I evolve topology and weights together (TWEANN)
| starting with simple topology and then add complexity

I \protect" innovation

Representation for TWEANN

How to represent the set of ANN with di erent topologies?
| direct: genotype phenotype
| genotype speci es nodes, connections, and weights
I indirect: genotypes phenotype
I genotype speci es how to build a phenotype

Key guestion: how to meaningfully do crossover?
I meaningfully! variational principle
I trivial solution: avoiding crossover

Crossover

How to meaningfully do crossover?
I networks (genotypes) of di erent size

I competing conventions (degeneracy)

I many genotypes for the same network, how to align
components?

NEAT representation

Key component: the innovation number!

I a globalcounter assigned to any new created connection, on
whichever individual

Mutation(s)

Three variants:
I perturb a weight

| add a connection with random weight (new gene!)
I add a node (new gene!)
I \in the middle" of a connection (vyg): the existing connection

is disabled and replaced with two connections connecting the

new node Wn, =1, W, = Weqg)

Mutation(s)

Crossover

1. Align genes by innovation number

2. Matching genes are inherited randomly from one of the
parents

3. The remaining (disjoint or excess) are inherited from the more
t parent

	General information
	Introduction
	Evolutionary computation
	EC in action
	Some common EAs

	EC for robotics
	Evolving a neural network
	NEAT
	How to choose the fitness?
	Soft robots
	Evolving the body of a VSR
	Reality gap

