
1/147

Evolutionary Robotics
Course within PhD program

Eric Medvet

June 2020

2/147

Section 1

General information

3/147

Lecturer

I Eric Medvet
I Dipartimento di Ingegneria e Architettura (DIA)
I http://medvet.inginf.units.it/

4/147

Course materials

I Lecturer's slides
I http://medvet.inginf.units.it/teaching/

evolutionary-robotics-phd-2020
I Suggested textbooks (for further reading)

I Kenneth A De Jong.Evolutionary computation: a uni�ed
approach. MIT press, 2006

I Other material:
I I will point you to some scienti�c papers for discussing

examples of application or speci�c details

5/147

Section 2

Introduction

6/147

What is Evolutionary Robotics?

De�nition
Evolutionary Robotics is the application of the techniques,
methods, and principles ofEvolutionary Computationfor the
automatic design of thebody (morphology) and themind
(controller) of autonomous robotic agents.

7/147

Section 3

Evolutionary computation

8/147

Evolutionary Computation vs. Machine Learning?

De�nition
Machine Learning is the science of getting computer to learn
without being explicitly programmed.

9/147

Up to now

\learn without being explicitly" ! re�ne some prede�ne more
general solution scheme

I RF for regression! �nd a good forest
I SVM for binary classi�cation! �nd a goodhyperplane

We have some (quite precise) idea (thehypothesis) about the
nature of the solution: a tree, an hyperplane, . . .

What if we do not?

9/147

Up to now

\learn without being explicitly" ! re�ne some prede�ne more
general solution scheme

I RF for regression! �nd a good forest
I SVM for binary classi�cation! �nd a goodhyperplane

We have some (quite precise) idea (thehypothesis) about the
nature of the solution: a tree, an hyperplane, . . .

What if we do not?

10/147

No hypothesis

I We just have a way to assess a candidate solution
I No hypothesis
I Computer: be free, learn a (good) solution!

(= program
yourself!)

How?

A signi�cant case:
I problem: life
I user: God?
I computer: nature
I learning method: natural evolution

10/147

No hypothesis

I We just have a way to assess a candidate solution
I No hypothesis
I Computer: be free, learn a (good) solution!(= program

yourself!)

How? A signi�cant case:
I problem: life
I user: God?
I computer: nature
I learning method: natural evolution

11/147

Evolutionary process

A general and basic scheme:
I a population of individuals compete for limited resources
I the population is dynamic: individuals die and are born
I �ttest individual survive and reproduce more than the others
I o�spring inherit some characters from parents (they are

similar but not identical)

On/by/for computers? Evolutionary computation (EC)

11/147

Evolutionary process

A general and basic scheme:
I a population of individuals compete for limited resources
I the population is dynamic: individuals die and are born
I �ttest individual survive and reproduce more than the others
I o�spring inherit some characters from parents (they are

similar but not identical)

On/by/for computers? Evolutionary computation (EC)

12/147

EC: a bit of history

1930s �rst ideas

1960s ideas development using �rst computers

1970s exploration

1980s exploitation

1990s uni�cation

2000s+ mature expansion

13/147

Communities

At least three communities:
I biologists: simulate/understand real evolution
I computer scientists/engineers: build interesting artifacts
I arti�cial-life researchers: build/study arti�cial worlds

Result:
I some duplications
I di�erent vocabularies
I strong habits

Kenneth A De Jong.Evolutionary computation: a uni�ed
approach. MIT press, 2006

14/147

What can be taught/learned?

Here:
I general scheme
I terminology
I some signi�cant variants
I general usage guidelines

Not here:
I (variant) details
I detailed motivation (\theory")
I speci�c tools

15/147

General scheme

I a population of individuals compete for limited resources
I the population is dynamic: individuals die and are born
I �ttest individual survive and reproduce more than the others
I o�spring inherit some characters from parents (they are

similar but not identical)

Some questions:
I what is an individual?
I what is a population? what are resources?
I how individuals compete?
I how �tness is measured?
I how do individual reproduce?

16/147

Individual

A candidate solution for the considered problem:

(phenotype)

I a program in a given programming language
I a set of numerical parameters
I a picture
I . . .

Internally represented as:

(genotype)

I itself (program, set, picture, . . .)
I some well de�ned data structure:

I a �xed/variable-length string of bits
I an abstract syntax tree
I . . .

16/147

Individual

A candidate solution for the considered problem:(phenotype)
I a program in a given programming language
I a set of numerical parameters
I a picture
I . . .

Internally represented as:(genotype)
I itself (program, set, picture, . . .)
I some well de�ned data structure:

I a �xed/variable-length string of bits
I an abstract syntax tree
I . . .

17/147

Individual: why genotype/phenotype?

I To resemble nature
I To ease manipulation

I how two programs should reproduce?
I how two images should reproduce?

I To allow reuse, hence enabling actual usage of EC
I someone found a good way of making bits strings reproduce
I user \just" need to decide how to transform

(genotype-phenotype mapping) a bits string to his/her
solution form (e.g., numerical parameters)

18/147

Genotype and phenotype

In general:
I search for the good solution actually occurs in the space of

the genotype
I the user is interested in the phenotype
I the �tness is computed from the phenotype

19/147

Population and competition for resources

Mainstream:
I a population is a set of individuals with a �xed (max) size
I \limited resources" is a place in the population

The population is dynamic:
I when a new individual is born, some individual must leave the

population (die): which one?

20/147

Population dynamics

How/when individuals are replaced? (generational model or
replacement strategy)

Underlying (and common) assumptions:
I individuals life is instantaneous

I given the genotype, the phenotype (if any) and the �tness are
immediately known

I time
owing is determined by births (and deaths)

21/147

Generational model: general scheme

Parameters:
I a population ofm parents
I a population ofn o�spring (built from parents; how? later)
I a Boolean
ag (overlapping vs. non-overlapping)

(Recall: population size is �xed)

22/147

Overlapping generational model

At each time tick:

1. build n o�spring from the m parents

2. obtain ann + m population by merging parens and o�spring

3. selectm individuals to survive

23/147

Non-overlapping generational model

At each time tick:

1. build n o�spring from the m parents (assumen � m)

2. selectm individuals to survive among then o�spring

All parents die!

24/147

Common cases

I n = m, overlapping
I n = m, non-overlapping
I n = 0 :8m, overlapping
I n = 1, overlapping (steady state)

Problem:
I di�erent degrees of dynamicity in the single time tick

I makes di�erent variants comparison di�cult

Solution:
I measure time
owing as number of births referred to

population sizem
I a generation occurs eachm births

24/147

Common cases

I n = m, overlapping
I n = m, non-overlapping
I n = 0 :8m, overlapping
I n = 1, overlapping (steady state)

Problem:
I di�erent degrees of dynamicity in the single time tick

I makes di�erent variants comparison di�cult

Solution:
I measure time
owing as number of births referred to

population sizem
I a generation occurs eachm births

25/147

Selection criteria

How to
I select individuals to survive?
I select parents to reproduce?

Many options:
I uniform (neutral) selection
I �tness-proportional selection
I rank-proportional selection
I truncation selection
I tournament selection
I . . .

26/147

Fitness/rank-proportional

Fitness-proportional:

1. given the numerical �tness of each individual

2. randomly pick one individual with probability proportional to
the �tness (the better, the larger probability)

Rank-proportional:

1. given the rank of each individual in a �tness-based ranking

2. randomly pick one individual with probability proportional to
the rank (the better, the larger probability)

(Can be applied to a non-numerical �tness, in principle)

27/147

Uniform and truncation

Uniform:

1. pick randomly an individual (with uniform probability)

Truncation:

1. pick the best individual

(Deterministic)

28/147

Elitism

Preserving as is one (or more) best individual
I a form of truncation
I actually, individuals chosen with elitism are not o�spring, but

they are in the new population

29/147

Tournament selection

Given a parameternsize (size of the tournament):

1. randomly (with uniform probability) picknsize individuals

2. from them, choose the one with the best �tness

30/147

Selection criteria di�erences

Is criterion A better than criterion B?Just measure!

Criteria di�er in how strongly they tend to prefer �t vs. un�t
individuals:

I uniform selection: no preferences
I truncation selection: strong preference of �t individuals
I tournament: nsize ! 1: no preference,nsize ! m: strong

preference

31/147

Selecting �t/un�t individuals

Strong preference (or selective/evolutionary pressure):
I population tends to converge to �ttest individuals
I evolution concentrates in improving most promising solutions

(exploitation)
I risk of \falling" in local optimum

Weak preference (or selective/evolutionary pressure):
I population includes also un�t individuals
I evolution investigates many di�erent (maybe not promising)

solutions (exploration)
I risk of not �nding a good solution

Exploration/exploitation trade-o� is hard to rule!

32/147

Selectors: common cases

I Reproduction: tournament ofnsize
I e.g., m = npop = 500, nsize = 5

I Survival: truncation

I Reproduction: �tness proportional
I Survival: truncation

33/147

Reproduction

Build n o�spring from the m parents. How?
General scheme:

I given one or more parents, an o�spring is generated by
applying a unary or binarygenetic operator on parent
genotypes

I unary (mutation): f : G 7! G
I binary (recombination orcrossover): f : G2 7! G

Then:
I givenn and a set of weighted operators, generate o�spring

with operators according to their weights (deterministically or
stochastically)

I or generate o�spring by applyingn (or n
2) times the crossover

and then the mutation on the resulting individual(s)

34/147

Choice of operators

Operators:
I crossover for generating 80% of o�spring
I mutation for generating 20% of o�spring

Deterministically:
1. for 0:8n times

1.1 select 2 parents (with reproduction selection criterion)
1.2 apply crossover to genotypes

2. for 0:2n times
2.1 select 1 parent (with reproduction selection criterion)
2.2 apply mutation to genotype

35/147

Choice of operators

Operators:
I crossover for generating 80% of o�spring
I mutation for generating 20% of o�spring

Stochastically:
1. for n times

1.1 randomly choose between mutation/crossover with 20/80
probability

1.2 select 1 or 2 parents (with reproduction selection criterion)
accordingly

1.3 apply operator to genotype(s)

36/147

Mutation for bits string genotypes

Most classical option: probabilistic bit
ip mutation

1. copy parent genotypegp as child genotypegc

2. for each bit in the ingc ,
ip it (0 ! 1 or 1 ! 0) with p
probability

Commonly,p = 0 :01

gp = 001010011101010101100100101

gc = 001010111101010101101100101

37/147

Crossover for (bits) string genotypes

Many options:
I one-point crossover
I two-points crossover
I n-points crossover
I uniform crossover
I . . .

38/147

One-, two-,n-points crossover

Assume parents with equal genotype size:

1. choose randomly one (two,n) cut points in the genotype
(indexesi such that i < jgp1 j = jgp2 j)

2. child bits before the cut point comes from parent 1, child bits
after the cut point comes from parent 2

In general,j th bit comes from parent 1 i� closest larger cut point
is even, from 2, otherwise.

39/147

One-, two-,n-point crossover

One-point:

gp1 = 00101001110101010j1100100101

gp2 = 11101010101001010j0101110111

gc = 00101001110101010 0101110111

Two-points:

gp1 = 0010100j1110101010j1100100101

gp2 = 1110101j0101001010j0101110111

gc = 0010100 0101001010 1100100101

40/147

Uniform crossover

A cut point is placed at each index withp = 0 :5 probability

41/147

Crossover with variable length (bits) string genotype

Many variants:
I one-, two-points crossover

I cut points may be di�erent within parents
I child genotype size may be larger or smaller than parents sizes

I . . .

One-point:

gp1 = 00101001110101010j1100100101

gp2 = 111010101j010010100101110111

gc = 00101001110101010 010010100101110111

Genotype-phenotype mapping must allow for variable length
genotypes!

42/147

Mutation (trees)

Parent

(x � y)
1
x

+ 0 :5

+

0:5�

=

x1

�

yx

Child

(x � y)
1
x

+ 1 + y

+

+

1y

�

=

x1

�

yx

1. choose a random subtree

2. replace with a randomly generated subtree

Usually, constraints on depth

43/147

Crossover (trees)

Parent 1

(x � y)
1
x

+ 0 :5

+

0:5�

=

x1

�

yx

Parent 2

(1 + x)(1 � y)

�

�

y1

+

x1

Child

1 + x + 0 :5

+

0:5+

x1

1. choose a random subtree in parent 1

2. choose a random subtree in parent 2

3. swap subtrees (child is copy of parent)

Usually, constraints on depth

44/147

Mutation for real-valued vectors (G = Rp)

Gaussian mutation
I parent gp, child gc

I for eachi 2 1; : : : ; p, g i
c = g i

p + � , with � � N (0; �)
I � is a parameter representing the mutation strength

I large � ! exploration
I small � ! exploitation

. . . and many similar variants

45/147

Crossover for real-valued vectors (G = Rp)

Besides all suitable for string genotypes, also:
I parentsgp1; gp1, child gc

I for eachi 2 1; : : : ; p, g i
c = g i

p1
+ � (g i

p2
� g i

p1
), with

� � U (0; 1)

Lacks the ability of explore out of the hyperrectangle enclosing the
population

46/147

Role of operators

Mutation (x)or crossover?
I mutation ! exploitation
I crossover! exploration

But the EC community is still debating about this point. . .

47/147

Population initialization

I Totally random
I More speci�c approaches, dependent on genotype form

48/147

Fitness

Fitness of an individual = ability to solve the problem of interest
I errors on several �tness cases by

execution/simulation/application

Common cases:
I one numerical index
I more than one numerical indexes
I . . .

Closely related with selectors

49/147

Many indexes: multiobjective

f (i) = hf1(i); : : : ; fn(i)i

How to compare individualsi1, i2 ?
I linearization

I f (i) = � 1f1(i) + � � � + � nfn(i)
I lexicographical order

I comparef1(i1)
?
> f1(i2); if tie, f2(i1)

?
> f2(i2); . . .

I Pareto dominance
I . . .

Q: with which selectors?

50/147

Pareto dominance

i1 dominatesi2 i�:

8j ; fj (i1) � fj (i2) ^ 9 k; fk (i1) > fk (i2)

0 2 4 6 8 10
0

2

4

6

8

10

f1

f 2

I 1st Pareto front:
undominated solutions

I 2nd Pareto front:
undominated solutions,
while not considering 1st
front

I . . .

50/147

Pareto dominance

i1 dominatesi2 i�:

8j ; fj (i1) � fj (i2) ^ 9 k; fk (i1) > fk (i2)

0 2 4 6 8 10
0

2

4

6

8

10

f1

f 2

I 1st Pareto front:
undominated solutions

I 2nd Pareto front:
undominated solutions,
while not considering 1st
front

I . . .

50/147

Pareto dominance

i1 dominatesi2 i�:

8j ; fj (i1) � fj (i2) ^ 9 k; fk (i1) > fk (i2)

0 2 4 6 8 10
0

2

4

6

8

10

f1

f 2

I 1st Pareto front:
undominated solutions

I 2nd Pareto front:
undominated solutions,
while not considering 1st
front

I . . .

50/147

Pareto dominance

i1 dominatesi2 i�:

8j ; fj (i1) � fj (i2) ^ 9 k; fk (i1) > fk (i2)

0 2 4 6 8 10
0

2

4

6

8

10

f1

f 2

I 1st Pareto front:
undominated solutions

I 2nd Pareto front:
undominated solutions,
while not considering 1st
front

I . . .

51/147

An example EA

1 b 0
2 I = Initialize()
3 while b � npopngen do
4 I 0 = ;
5 foreach i 2 f 1; : : : ; npopg do
6 (gp1; pp1; fp1) SelTournament(I)
7 (gp2; pp2; fp2) SelTournament(I)
8 gc om(oc(gp1; gp2))
9 I 0 I 0[f (gc ; �(gc); f (�(gc))g

10 b b + 1
11 end
12 I I [I 0

13 while jI j > npop do
14 I I n SelWorst(I)
15 end
16 end

52/147

In practice

I Is my EA working?
I When to stop evolution?
I How to choose value for parameterX?

0 50 100
0:94
0:96
0:98

1
1:02

Generation

F
itn

es
sf

(i
)

On many (� 30) runs!

52/147

In practice

I Is my EA working?
I When to stop evolution?
I How to choose value for parameterX?

0 50 100
0:94
0:96
0:98

1
1:02

Generation

F
itn

es
sf

(i
)

On many (� 30) runs!

53/147

Issues

I Diversity
I Variational inheritance
I Expressiveness
I . . .

54/147

Diversity

Is the population diverse enough?
I \No" ! too much exploitation! local minimum
I \Yes" ! in principle, no drawbacks

I how to measure diversity?
I how to enforce/promote diversity?

Giovanni Squillero and Alberto Tonda. \Divergence of character
and premature convergence: a survey of methodologies for
promoting diversity in evolutionary optimization". In:Information
Sciences329 (2016), pp. 782{799

55/147

Diversity: visualization

1 ngen
1

l

Generation

G
en

e
in

de
x

1 ngen
1

l

Generation

G
en

e
in

de
x

0 1
0

1

Usageu

D
iv

er
si

ty
d

Eric Medvet et al. \Unveiling evolutionary algorithm representation
with DU maps". In: Genetic Programming and Evolvable
Machines19.3 (2018), pp. 351{389

56/147

Variational inheritance

Are children similar but not identical to parents?
I \Too much similar" ! too much exploitation! local

minimum, no/slow evolution
I \Too much di�erent" ! no exploitation, just coarse

exploration (random walk)

I How to measure?! properties of the representation
I How to tackle? Operators, mapping, both?

57/147

Properties of the representation

Given:
I genotype spaceG, phenotype spaceP, �tness spaceF

I a (partial) order � existing inF
I genotype-pheotype mapping: � :G 7! P

I often � : G 7! P [? , where? represents aninvalid solution

I �tness function: f : P 7! F
I mutation om : G 7! G and crossoveroc : G2 7! G
I distancesdG : G2 7! R+ and dP : P2 7! R+

some properties of the representation can be de�ned

58/147

Invalidity

The tendency of generating invalid phenotypes:

invalidity =
jf g 2 G : �(g) = ?gj

jGj

or, experimentally, withG

59/147

Degeneracy

The degree to which di�erent genotypes are mapped to the same
phenotype:

degeneracy = 1�
jPj
jGj

or, experimentally, withG and P = f �(g); g 2 Gg

Notes:
I often called redundancy
I assumingP is the range of � (i.e., P = f �(g); g 2 Gg)

60/147

Uniformity of degeneracy

The degree to which the sizes of di�erent sets of genotypes
mapping to the same phenotype di�er:

Gi = f g 2 G : �(g) = pi g; 8pi 2 P

S = fjG1j; jG2j; : : : ; jGjPj jg

non-uniformity =
� S

� S
(coe�cient of variation)

or, experimentally, withG and P = f �(g); g 2 Gg

61/147

Redundancy

The degree to which parts of the genotype do not concur in the
mapping process

I how to measure depends on the representation
I is a source of degeneracy: genotypes which di�er in redundant

part are (likely) mapped to the same phenotype

62/147

Locality

The degree to which close genotypes are mapped to close
phenotype:

DG = f dG(gi ; gj); i ; j 2 f 1; : : : ; jGjgg

DP = f dP (�(gi); �(gj)) ; f i ; j 2 1; : : : ; jGjgg

locality = cor(DG; DP)

or, experimentally, withG and P = f �(g); g 2 Gg; or simpler
versions for discrete spaces (no need for distance, nor for
correlation)

63/147

Evolvability

The likelihood of obtaining a better individual after the application
of a genetic operator

I involves the operator and the �tness

evolvabilitymutation = P(f (�(om(gp)) � f (�(gp)))

evolvabilitycrossover= P

0

@
f (�(oc(gp1; gp2)) � f (�(gp1))

^
f (�(oc(gp1; gp2)) � f (�(gp2))

1

A

More in general: the tendency of an evolutionary system to
improve solutions

64/147

Expressiveness

Is the representation (phenotype) expressive enough? (IsP large
enough?)

I \Low expressiveness"! good/optimal solution might not be
representable, or might not be reachable

I \Large expressiveness"! large search space! very long or
in�nite convergence time

65/147

Fitness landscape

I How are genotype and �tness spaces related?
I What does a small step on one correspond to on the other?
I Local optima?

66/147

Fitness landscape

Philip A Romero and Frances H Arnold. \Exploring protein �tness landscapes

by directed evolution". In: Nature reviews Molecular cell biology10.12 (2009),

p. 866

67/147

Subsection 1

EC in action

68/147

EC in action

https://youtu.be/4pdiAneMMhU

69/147

Subsection 2

Some common EAs

70/147

Genetic Algorithms (GA)

I Genotype = phenotype = bits string
I m = n � 1000, no overlapping
I Fitness-proportional selection, or multiobjective

(Pareto-based) selection

I Most widely used/studied
I Genotypes often encodes numerical parameters

71/147

Genetic Programming (GP)

Focus: individuals are programs
I Genotype = phenotype = tree (tree-based GP) or list of

instructions (linear GP)
I m = n � 1000, overlapping
I Tournament selection

I Syntactic/semantic validity?
I Representation is de�ned by a terminal setT and a function

set F

72/147

Grammatical Evolution (GE)

A form of GP based on GA, given a context-free grammar (CFG)G

I Genotype = bits string, phenotype = string2 L (G), by means
of a mapping procedure

I steady state (m � 500; n = 1, overlapping) orm = n,
overlapping

I Tournament selection

CFG for simple mathematical expressions:

<expr> ::= (<expr> <op> <expr>) | <var> | <num>
<op> ::= + | - | * | /
<var> ::= x | y
<num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

73/147

GE (standard) genotype-phenotype mapping

g = 01101001 00001101 01011000 00000011 11000110 01111101 (bits)

= 105 13 88 3 198 125 (integers)

i gi jrsj j w Phenotypep

<expr>
0 105 3 0 0 (<expr> <op> <expr>)
1 13 3 1 0 (<var> <op> <expr>)
2 88 2 0 0 (x <op> <expr>)
3 3 4 3 0 (x / <expr>)
4 198 3 0 0 (x / (<expr> <op> <expr>))
5 125 3 2 0 (x / (<num> <op> <expr>))
0 105 10 5 1 (x / (5 <op> <expr>))
1 13 4 1 1 (x / (5 - <expr>))
2 88 3 1 1 (x / (5 - <var>))
3 3 2 1 1 (x / (5 - y))

<expr> ::= (<expr> <op> <expr>) | <var> | <num>
<op> ::= + | - | * | /
<var> ::= x | y
<num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

74/147

An alternative: WHGE genotype-phenotype mapping

Alberto Bartoli, Mauro Castelli, and Eric Medvet. \Weighted
Hierarchical Grammatical Evolution". In:IEEE transactions on
cybernetics(2018)

75/147

Section 4

EC for robotics

76/147

Subsection 1

Evolving a neural network

77/147

What is arti�cial neural network (ANN)?

78/147

ANN for controlling (small) robots

E.g., Thymio-II robot:
I inputs: 7 IR proximity sensors (and others)
I outputs: 2 motors (wheels)

79/147

Designing a neural network

Choose:
I topology
I weights (�)
I other \details": e.g., activation function

80/147

Just the weights

A possible EC-based approach:
I phenotype: ANN with pre-�xed topology
I genotype:� 2 Rp, p depending on the topology
I genetic operators suitable forG = Rp

I other representation-independent parameters (e.g., selection
criteria, generational model)

I �tness (mainly problem-related)

How to choose the topology?
I usually, input and output size are prede�ned, so. . .
I . . . how to choose how many hidden layers and how many

neurons per layer? (expressiveness)

81/147

Subsection 2

NEAT

82/147

An alternative to \just the weights"

Kenneth O Stanley and Risto Miikkulainen. \Evolving neural
networks through augmenting topologies". In:Evolutionary
computation10.2 (2002), pp. 99{127

Key ideas:
I evolve topology and weights together (TWEANN)
I starting with simple topology and then add complexity
I \protect" innovation

83/147

Representation for TWEANN

How to represent the set of ANN with di�erent topologies?
I direct: genotype� phenotype

I genotype speci�es nodes, connections, and weights
I indirect: genotype6= phenotype

I genotype speci�es how to build a phenotype

Key question: how to meaningfully do crossover?
I meaningfully! variational principle
I trivial solution: avoiding crossover

84/147

Crossover

How to meaningfully do crossover?
I networks (genotypes) of di�erent size
I competing conventions (degeneracy)

I many genotypes for the same network, how to align
components?

85/147

NEAT representation

Key component: the innovation number!
I a global counter assigned to any new created connection, on

whichever individual

86/147

Mutation(s)

Three variants:
I perturb a weight
I add a connection with random weight (new gene!)
I add a node (new gene!)

I \in the middle" of a connection (wold): the existing connection
is disabled and replaced with two connections connecting the
new node (w in

new = 1, wout
new = wold)

87/147

Mutation(s)

88/147

Crossover

1. Align genes by innovation number

2. Matching genes are inherited randomly from one of the
parents

3. The remaining (disjoint or excess) are inherited from the more
�t parent

	General information
	Introduction
	Evolutionary computation
	EC in action
	Some common EAs

	EC for robotics
	Evolving a neural network
	NEAT
	How to choose the fitness?
	Soft robots
	Evolving the body of a VSR
	Reality gap

